Texas Technology Student Association

UNIQUE TO TEXAS EVENTS
UTE's

2017-2018

CHANGES HAVE BEEN MADE:
NEW CATEGORIES HAVE BEEN ADDED &
SOME CATEGORIES HAVE BEEN MERGED/DELETED

DO NOT USE
PREVIOUS YEARS
RULES BOOKS!
Texas TSA On-site events use the rules as listed for each event. The event judge may explain additional regulations and procedures that affect the operation of the contest before the events take place.

Hot Rod CO2 Car Competition

<table>
<thead>
<tr>
<th>Hot Rod CO² Car Competition</th>
<th>Entries Per Region</th>
<th>Classification #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>3</td>
<td>Middle School: MU100 High School: HU100</td>
</tr>
<tr>
<td>ABS Plastic</td>
<td>3</td>
<td>Middle School: MU101 High School: HU101</td>
</tr>
</tbody>
</table>

Rules for this contest and procedures may be found on the Texas TSA Website after Sept. 15th.

2018 Pro Stock Pickup
2019 Hot Rod / Classic Gasser
2020 60 / 70 muscle cars
2021 NHRA Funny Car

Hot Rod Competition (HRC) provides technology students with another opportunity to use their knowledge and skills in problem solving and the fun and excitement of racing competition. The goal of HRC is to encourage students to design and build realistic looking ¼ mile Hot Rod Car models. The project has been carefully planned to allow students to create realistic scale models of dragsters, funny cars, pro-stock cars and trucks and still have a chance to win races. The vehicle should be built of several parts or sub-assemblies rather than carved out or 3D printed as a single unit.

Specifications:

Power Plant Chamber

- **Length:** 250 - 305 mm
- **Width:** 69 to 89 mm at the widest point on the car.
- **Height:** (above the race surface) Minimum: 76 mm Maximum: 89 mm
- **Weight:** (not including CO2 cartridge) Minimum: 150 grams

Wall Thickness:

- Minimum: 3 mm around the CO2 cartridge
- Minimum: 47 mm Maximum: 54 mm

Depth:

- Minimum: 31 mm Maximum: 44 mm

Center:

- Power Plant Chamber Center to Race Surface: 31 mm to 44 mm
- MINIMUM: 2, must be spaced at least 102 mm apart.

Required Equipment:

- Wide rear slicks, skinny front tires
- No Rear Wing
- Front mounted engine with side exhaust pipes
- Traditional Pickup Truck Configuration (Front Engine under hood, Passenger Cab, and Truck Bed) with CO2 Power Plant Chamber mounted above bed of truck

Optional Equipment:

- Driver, pinstripes, decals or stickers, engine wiring and anything else to enhance the realistic look of the truck.

Rules:

1. Hot Rod must be powered by one 8 gram CO2 cartridge.
2. Hot Rod must fit onto a standard CO2 track.
3. If a car fails the initial weigh in, the race officials may provide student with an opportunity to bring the racer up or down to weight limits.
4. Any racer deemed unsafe by judges will not be raced.
5. All parts must be made of either wood or plastic. Glass and/or metal parts will be deemed unsafe. Exceptions: axles may be metal, plastic or wood.
6. All decisions of weight, size limits, or safety are the responsibility of the judges. Judges decisions are final.
7. In order to qualify for judging and placing, a car MUST remain in safe and operable condition after all racing and be capable of safely racing again.
Hot Rod CO2 Car Competition (continued)

DOCUMENTATION: Student must submit plans/blueprint, no larger than 11” X 17”, of all of the parts, sub-assemblies or final car with appropriate dimensions.

JUDGING:

50% Appearance: Quality of craftsmanship + authenticity of appearance to plans/blueprint. Awarded 1st through number of valid entries.

50% Race Results: Points will be awarded based upon race times.

Each Hot Rod will be awarded 1st through the number of valid entries for both appearance and race results. The lowest combined score wins 1st Place, the second lowest combined score wins 2nd Place, and so on. In case of a tie, the car with the better appearance and documentation will place higher.

CO2 RESEARCH RACER

<table>
<thead>
<tr>
<th>RESEARCH RACER</th>
<th>Entries Per Region</th>
<th>Classification #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Middle School</td>
</tr>
<tr>
<td>Wood</td>
<td>3</td>
<td>MU102</td>
</tr>
<tr>
<td>ABS Plastic</td>
<td>3</td>
<td>MU103</td>
</tr>
</tbody>
</table>

The intent of the Research Racer is to allow students the freedom to experiment with different materials, shapes, and ideas when building and designing this CO2 vehicle.

SPECIFICATIONS:

LENGTH: Minimum 152 mm

WIDTH: Must fit within a single lane of a standard CO2 car track.

WEIGHT: (not including CO2 cartridge) MINIMUM 28 grams MAXIMUM 226 grams

POWER PLANT CHAMBER

WALL THICKNESS: MINIMUM 3 mm around the CO2 cartridge

DEPTH: MINIMUM 47 mm MAXIMUM 54 mm

CENTER: Power Plant Chamber Center to Race Surface: 31 mm to 38 mm

GUIDE LUGS: MINIMUM: 2, must be spaced at least 101 mm apart.

RULES:

1: Racer must be powered by one 8 gram CO2 cartridge.

2: Hot Rod must fit onto a standard CO2 track.

3: If a car fails the initial weigh in, the race officials may provide student with an opportunity to bring the racer up or down to weight limits.

4: Racer body must be supported on the track by devices other than the guide lugs used to attach the vehicle to the track. (Examples: Wheels, springs, paperclips, Teflon, etc.)

5: Any racer deemed unsafe by judges will not be raced.

6: All parts must be made of either wood or plastic. Glass and/or metal parts will be deemed unsafe. Exceptions: axles may be metal, plastic or wood.

7: All decisions of weight, size limits, or safety are the responsibility of the judges. Judges decisions are final.

DOCUMENTATION: Student must submit plans/blueprint, no larger than 11” X 17”, of all of the parts, sub-assemblies or final car with appropriate dimensions.

JUDGING:

50% Appearance: Quality of craftsmanship + authenticity of appearance to plans/blueprint. Awarded 1st through number of valid entries.

50% Race Results: Points will be awarded based upon race times.

Each Hot Rod will be awarded 1st through the number of valid entries for both appearance and race results. The lowest combined score wins 1st Place, the second lowest combined score wins 2nd Place, and so on. In case of a tie, the car with the better appearance and documentation will place higher.
The course will be an on-road race. Cars will be raced then they must be exhibited for awards. Race results will be posted. For additional information contact: Contest Director

The purpose of the RC OR REMOTE CONTROLLED race is to showcase the learning activities of students building radio controlled cars and the components that make up this type of transportation system.

RULES:

1: The race will be divided into heats by classification. Each heat will have approximately four cars each.
2: The winner of each heat will advance to the next round. The number of teams entered will determine the number of rounds.
3: Each round will consist of a four-minute race.
4: The final round will consist of an eight-minute race with a required pit stop for all cars. (Battery change for electric cars or refueling for gas cars at some point during the race).
5: A car must be operational and on the track at the end of a race or it will be disqualified.
6: Any driver who has the same or more laps in a round as the round qualifiers will also advance to the next round.
7: All radios/controllers must be impounded, except when contestants are racing, until all races are over. Failure to return your radio/controller to the impound area will mean disqualification from the contest.
8: Someone from your race team must corner marshall at all times.
9: Participants may use two or four wheel drive vehicles.
ROCKET LAUNCH

Every participant must have a Texas TSA Event Personal Liability release form to participate.

Note: All rockets are limited to one engine with size no greater than an "A83"

<table>
<thead>
<tr>
<th>Entries Per Region</th>
<th>Classification #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocket (Student Built /Designed)</td>
<td>3</td>
</tr>
<tr>
<td>Rocket (Kit)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kit Rockets: Rockets for this classification will be built from a commercially produced kit. The student will assemble the rocket following the instructions supplied with the rocket. Rockets that are purchased already assembled and ready to fly are not allowed in this classification. Documentation will include: Assembly Instructions supplied with kit. The appearance (area 1) will be compared to the instruction sheet for correctness of construction No appearance score will be given without the instruction sheet.

Clarification: Extruded and plastic fins are allowed as long as they are individual pieces and not a prefabricated unit. There must be clear evidence that each fin is separately affixed onto the rocket body. No fin rings.

Student Built/Designed Rockets: Students must design and build the rocket for this classification from scratch. The student must build the body tube, the nose cone, the fins and the recovery system, without using parts from rocket kits. The only commercially made rocket part that can be used is the engine mount. Documentation: Students must have a drawing of the rocket. The appearance (area 1) will be compared to the drawing for correctness of construction.

Rockets considered unsafe by the contest judge will not be flown.

Judging Criteria:

Area 1 —— Appearance - weight, strength, shape, surface, smoothness, and color.
Area 2 —— Flight - lift-off, no gyration, steady climb.
Area 3 —— Recovery - separation, chute fully deployed, or streamer lands nearby.

Three judges will award points from 0 to 5 on each of three areas. A perfect score is 45 points. Each judge will evaluate without consultation. The decision of the judges will be final. In case of a TIE, in the top 3 entries, students will fire rockets again. In case of bad weather, the state winners will be judged on appearance only.

NOTE: Rockets must be test-fired prior to the contest.

Instructions:
1. Only one student on the launch pad.
2. Students must wear safety glasses or goggles while preparing rocket for flight.
3. Student has a 5-minute limit from “GO” to “BLAST OFF”.
4. Pick up wadding and old engine casings and dispose of them properly.
5. Points will be awarded accordingly.
DRONE COMPETITION

COMING SOON!!!

<table>
<thead>
<tr>
<th>Drone Competition Rules</th>
<th>Entries Per Region</th>
<th>Classification #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>Middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>MU108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HU108</td>
<td></td>
</tr>
</tbody>
</table>
TEXAS TSA CATAPULT CONTEST
Every participant must have a Texas TSA Event Personal Liability release form to participate.

Entries Per Region

<table>
<thead>
<tr>
<th>Classification #</th>
<th>Middle School</th>
<th>High School</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU109</td>
<td>HU109</td>
<td></td>
</tr>
</tbody>
</table>

Catapult Rules:

1: Team of up to 4 students. Limit 1 team per chapter. Limit 2 entries per area.
2: All team members MUST be present during launching/competition time.
3: Projectile is a hollow plastic practice golf ball (approximate weight of 14.5 grams each). Each team will be given a container of 3 dozen plastic golf balls as their ammunition. No further ammunition is allowed and no "re-firing" of projectiles that miss the target.
4: All team members MUST wear OSHA approved safety glasses at all times during the competition.
5: Each team will get 2 practice launches. A total of 3 minutes will be given for firing test shots and adjusting of catapult.
6: All catapults must be placed directly on the firing line with the front of the catapult being "ON" the line.
7: Teams will receive their "ammunition" from the Contest Coordinator. Upon receiving their ammunition and clearance to "FIRE", each team will have 1 minute (60 seconds) to launch as many shots as possible. The goal is to accumulate as many points as possible in the net target. Teams must cease fire at the end of one (1) minute.
8: The center of the scoring net will be approximately 15' from the firing line.
9: The scoring net will consist of 3 concentric squares. The center square (inner target) will measure 10 inches by 10 inches. The middle square (middle target) will measure 24" by 24 inches and will have the 10" square centered within it. The outermost square (outside target) will measure 40" by 40" and the other two target squares will be centered within it.
10: Scoring is as follows:
 - Center Square/Inner Target = 5 points
 - Middle Square/Middle Target = 3 points
 - Outermost Square/Outside Target = 1 point
11: Ammunition (plastic golf balls) MUST enter the target the target on the fly. No "bounce in" points will be allowed/awarded.
12: Ties will be broken as follows: a) the team with the highest score and least amount of ammunition pieces in the target. B) the team with the shortest time recorded to score the most points.
13: Team members must collect all ammunition once the time limit is up and return it to the judges.

Physical Limits of Catapult

1: Size Limits: 24 inches wide by 24 inches long by 24 inches tall (with swing arm in vertical position)
2: Base of the catapult must accommodate the provided ballast. Ballast will be in the form of two 25 lb. weight plates with a center hole diameter of 1 inch.
3: The catapult must be made entirely from PVC pipe, with the exception of the launch mechanism, firing mechanism, fasteners, and safety items. These items may be wood or metal and must be constructed in a safe way, so as not to damage the device, the testing area, or cause harm to others.
4: The catapult must operate completely within the given area. The launch arm may extend beyond the front and rear of the catapult only while launching.
Texas Technology Student Association
OFFICIAL RULEBOOK
2017-2018

Texas TSA CATAPULT CONTEST (continued)

Physical Limits of Catapult (continued)

5: The catapult may have any type of spring mechanism to power the launch arm. All parts must be contained within the 2 foot cube maximum footprint prior to launch.
6: The total weight of the catapult may no exceed fifteen (15) pounds.
7: All parts of the catapult must begin behind the launch line prior to launch. Parts may extend past the launch line during and after launch.
8: The following materials may NOT be used:
 A: Glass
 B: Flammable, corrosive, or explosive materials
 C: Compounds that produce odors or gases.
9: The catapult must have a pull cord that is a minimum of five (5) feet long. The pull cord MUST be the mechanism to activate the launching of the catapult.
10: When the catapult is on display/not in performance mode, it must be fully disabled and unable to be readied to launch.
11: The launch arm must have a cup/basket to hold the projectile. No moving cradle or moving basket or sling may be used.

Catapult Go/No Go Checklist:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Safety Glasses?</td>
<td>YES / NO</td>
</tr>
<tr>
<td>2: Catapult is ballast ready?</td>
<td>YES / NO</td>
</tr>
<tr>
<td>3: Does catapult meet size limits?</td>
<td>YES / NO</td>
</tr>
<tr>
<td>4: Is catapult made from correct materials?</td>
<td>YES / NO</td>
</tr>
<tr>
<td>5: Does catapult launch with pull cord?</td>
<td>YES / NO</td>
</tr>
<tr>
<td>6: Is the pull cord 15 feet long or longer?</td>
<td>YES / NO</td>
</tr>
<tr>
<td>7: Does the catapult have a safe launching mechanism?</td>
<td>YES / NO</td>
</tr>
<tr>
<td>8: Is the catapult safe to operate?</td>
<td>YES / NO</td>
</tr>
</tbody>
</table>
TSA ELECTRONIC FLIGHT CONTEST

Every participant must have a Texas TSA Event Personal Liability release form to participate.

<table>
<thead>
<tr>
<th>Classification #</th>
<th>Entries Per Region</th>
<th>Middle School</th>
<th>High School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotorcraft</td>
<td>3</td>
<td>MU110</td>
<td>HU110</td>
</tr>
<tr>
<td>Fixed-Wing</td>
<td>3</td>
<td>MU111</td>
<td>HU111</td>
</tr>
</tbody>
</table>

The course will be inside the building unless otherwise posted.
For additional information contact: Contest Director

The purpose of the RC OR REMOTE CONTROLLED race is to showcase the learning activities of students building radio controlled AIRCRAFT and the components that make up this type of transportation system.

REGULATIONS:
1: Electric motors ONLY.
2: 12” Maximum wingspan
3: Teams will consist of 1 pilot and 2 spotters.
4: OSHA approved safety glasses must be worn at all times by anyone in the “Flight Zone”.
5: All radios/controllers must be turned into the judges prior to the first race. Please label your radio/controller appropriately.
6: Failure to return the radio/controller to the judges after each race will result in a disqualification.
7: Drones (helicopters with multiple rotors) MUST have Propeller Guards.
8: Airplane/helicopters must be operational at the end of the race in order to advance.

RULES:
1: Airplane/Helicopters will fly around four (4) posts in an oval pattern.
2: Two airplanes/helicopters will run in each heat starting on opposite sides of the track.
3: Each heat will last 3 minutes.
4: Most completed laps wins the heat.
5: Only completed laps will be counted unless there is a tie. In which case the team which has completed the largest percentage of the final lap will be declared the winner.
6: Winners from each heat will advance.
7: Final 2 teams will race in a 5 minute heat and must perform one (1) “touch and go” on their start/finish side during the heat.
On-Site Computer Skills Contest Non-NQE Events

Participating schools must supply all necessary software, hardware, paper, etc. All judging will be done on the contestants computer screen. Events such as animation’s and presentations will be demonstrated to a judge. Limited to three participants per region in each classification. These events will only be offered one time at state contest.

<table>
<thead>
<tr>
<th>Description</th>
<th>Entries Per Region</th>
<th>Classification #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADD/CAM/CNC (lathe) (w/ tool path generation)</td>
<td>3</td>
<td>MU112</td>
</tr>
<tr>
<td>CADD/CAM/CNC (mill) (w/ tool path generation)</td>
<td>3</td>
<td>MU114</td>
</tr>
<tr>
<td>Animation</td>
<td>3</td>
<td>MU116</td>
</tr>
<tr>
<td>Graphic Design, Artistic</td>
<td>3</td>
<td>MU118</td>
</tr>
<tr>
<td>Multi-Media Presentation</td>
<td>3</td>
<td>MU120</td>
</tr>
<tr>
<td>Testing can be over any or all categories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Students must supply a sharp number 2 pencil and a hard surface, such as a clipboard, to lay the answer sheet on while marking answers. Maximum size of the surface will be 12 x 16 inches.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Contest limit - 1 hour.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle School Written Exam</td>
<td>15</td>
<td>MU200</td>
</tr>
<tr>
<td>High School Written Exam</td>
<td>15</td>
<td>HU210</td>
</tr>
</tbody>
</table>

WRITTEN EXAMINATION

A single general knowledge test over all areas of Industrial Technology Education. Subjects include, but are not limited to: Woodworking, welding, manual & CNC machining, manufacturing, electronics, robotics, architecture, engineering, drafting, and model making, communications, desktop publishing, photography, safety, or other areas related to Industrial Technology. May include historical and modern systems.

GRAPHIC SOLUTIONS

This competition will test the student’s ability to solve a given problem with minimum supplies. The only items that may be taken into the contest area are: flat drawing surface, such as a clipboard, (maximum size of 12 x 16 inches), pencils and eraser. Drafting aids will not be allowed. Participants will be seated in regular folding chairs. Grid paper will be supplied.

MIDDLE SCHOOL

<table>
<thead>
<tr>
<th>Description</th>
<th>Entries Per Region</th>
<th>Classification #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Problem Solving</td>
<td>7</td>
<td>MU300</td>
</tr>
<tr>
<td>Communication Technology</td>
<td>7</td>
<td>MU301</td>
</tr>
<tr>
<td>Computer Applications</td>
<td>7</td>
<td>MU302</td>
</tr>
<tr>
<td>Construction Technology</td>
<td>7</td>
<td>MU303</td>
</tr>
<tr>
<td>Energy, Power, & Transportation Technology</td>
<td>7</td>
<td>MU304</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>7</td>
<td>MU305</td>
</tr>
</tbody>
</table>

HIGH SCHOOL

<table>
<thead>
<tr>
<th>Description</th>
<th>Entries Per Region</th>
<th>Classification #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Problem Solving</td>
<td>7</td>
<td>HU310</td>
</tr>
<tr>
<td>Architecture and Construction</td>
<td>7</td>
<td>HU311</td>
</tr>
<tr>
<td>Engineering & Design</td>
<td>7</td>
<td>HU312</td>
</tr>
<tr>
<td>Promotional Design and Marketing</td>
<td>7</td>
<td>HU313</td>
</tr>
<tr>
<td>Manufacturing Design</td>
<td>7</td>
<td>HU314</td>
</tr>
<tr>
<td>Information Technology</td>
<td>7</td>
<td>HU315</td>
</tr>
<tr>
<td>Bio-technology</td>
<td>7</td>
<td>HU316</td>
</tr>
</tbody>
</table>

Unique to Texas Events (UTE's) 32 October 20, 2017